
NASA Technical Memorandum 89015

c

FTMP Programmer's Manual
(NASA-TH-89015) FTHP (FAULT TCLEEANT M87-10731
H ULT IPRO C ES SOE)
4 3 p CSCL 09B

E 5 OG R ABCIE R S E& & U AL (H AS A)

Unclas
G3/62 44221

Frank E. Feather

Carlos A. Liceaga

Peter A. Padilla

a
I September 1986

qr

National Aeronautics and
Space Administration

Langley R-rch Center
Hampton. Virginia 23665

.

1

Table of Contents
1. Programming FTMP

1.1. Overview
1.2. Accessing the IBM

1.3. VAX Commands to Compile, Assemble, and Link
1.4. AED
1.5. Linking Things Together

1.2.1. File Structure

1.5.1. Link Files
1.5.2. Prototype Link File
1.5.3. Setting up Task Tables
1.5.4. Linking

1.6. Downloading
1.7. Debugging FTMP
1.8. Collecting Data
1.9. Summary

2.1. F'I" Overview
2. FTMP Operation From the VAX

2.1.1. FTMP Hardware Overview
2.1.2. FTMP Software Overview

2.2. VAX Initialization
2.3. Turning the FTMF' On
2.4. Loading the FTMP
2.5. FTMP Status Display Operation

2.5.1. Turning the Display Station On
2.5.2. Loading the 1553-RS232 Communication Board

2.6.1. Loading the 1553-UNIBUS Communication Board
2.6.2. Connecting the Fault Injector
2.6.3. Injecting Faults

2.6. FTMP Fault Injector Operation

3. Helpful Hints
3.1. Dial Up Lines
3.2. When FTMP doesn't work

3.2.1. FTMP Will not Load
3.2.2. I82648 display terminal
3.2.3. VAX/FTMP interface and Collins Test Adaptor

3.3. Failing and Repairing Processors
3.4. LRU Diagnostic Program
3.5. More on CTA

Appendix I. System Bus Service Routines -- Additions
Appendix 11. Parameter Declarations
Appendix 111. Program Example

3
4
5
5
6
7
9
9

12
12
16
17
17
18
19
21
21
21
22
22
22
23
23
23
23
23
23
24
24
25
25
25
25
26
26
26
27
28
29
30
31

..
11

List of Figures

Figure 1-1: FTMP Support Environment
Figure 1-2: Compile/Assemble/Link process
Figure 1-3:
Figure 1-4:
Figure 1-6: Data Collection Example
Figure 1-6:

Operating System Task Structures
Program in Debugging Stage

Sample Data Collection Dump

3
4

13
18
19
19

t

FTMP Programmer's Manual

"

The Fault Tolerant Multiprocessor (FTMP) computer system was constructed using the

Rockwell/Collins CAPS-6 processor. It is installed in the Avionics Integration Research Laboratory

(AIRLAB) of NASA Langley Research Center. It is hosted by AIRLAB's System 10, a VAX 11/750, for

the loading of programs and experimentation. The FTMP support software resides on the IBM 4381

computer of the Business Data Systems Division of Langley Research Center. This support software

includes a cross compiler for a high level language called Algol Extended for Design (AECD), an assembler

for the CAPS-6 processor assembly language, and a linker. Access to this support software is through an

automated remote access facility on the VAX which saves the user of the burden of learning how to use

the IBM 4381.

This manual is a compilation of information about the FTMP support environment. It explains the

FTMP software and support environment along with many of the finer points of running programs on

FTMP. This will be helpful t o the researcher trying to run an experiment on FTMF' and even to the

person probing FTMP with fault injections. Much of the information in this manual can be found in

other sources; we are only attempting to bring together the basic points in a single source. If the reader

need any points clarified, there is a list of support documentation in the back of this manual.

This the third edition of this manual. The first edition was written by Frank Feather in the summer of

1984 and consisted of a shell of sections on how t o use the facilities at AIRLAB and clues on running

FTMP programs. The first edition was really a draft of the second edition but was getting extensive use

before the full manual was released. This first manual was used around the FTMP station at AIRLAB

and had nearly as many penciled in comments as typed words. A user's guide to FTMP, written by

Carlos Liceaga, also existed at AIRLAB. That user's guide was merged with the first edition to form the

second edition of FTMP Programmer's Ma.nua1.

In spring 1985 the programming process was greatly simplified by the installation of a program by

Peter Padilla for doing remote compilation and linking from the VAX. This rendered one whole chapter

of the second edition obsolete, since the FTMP user no longer had to deal with the IBM. The major

changes in this edition of the manual is the description of the new programming environment and the

deletion of obsolete sections.

There are several people who contributed to this manual. First, the AIRLAB staff, who helped with any

problems we had with the VAX or FTMP. Two of the initia.1 researchers of FTMP at AIRLAB are Matt

Reilly, who wrote the a program called "CONNECT" to connect the VAX to the IBM, and Ed Clune,

who initiated the ailt,llora into t,hP F'I'h4P work Pnvironment 2nd wrcte snme nf the first experirr.er?ts fer

2

FTMP. Through Ed’s help and observations we began much of the initial work on the manual. Also, the

very first guinea pigs to the manual, Ann Marie Grizzaffi and Edward Czeck, both of whom were able to

get their first program running much more quickly (1 day) than the first programs tha t Frank Feather,

Ed Clune and Matt Reilly wrote (literally months!). Finally, we wish to thank all of those user’s of

FTMP, Mike Woodbury and researchers at University of Michigan.

3

Test Adapter

I. Programming FTMP

r

MilStd FTMP RS
Display 232 1553

FTMP
I /O

Interface

-

The FTMP software is written either in a high-level language called AED or in the CAPS-6 assembly-

level language. Instead,

source programs must be converted into the CAPS machine language on a mainframe computer that

supports AED. At AIRLAB, that mainframe is an IBM 4381. To create tasks for the FTMP the

programmer must create an AED program and a linker command file on a VAXl1/750 (System 10 at

AIRLAB) and use the remote compile and link facility (Section 1.3.1) to cross-compile, assemble and link

the program to produce a load file. The load file is automaticly downloaded from the IBM 4381 to the

VAX by the remote access facilities and must then be downloaded to the FTMP. The support computers

for FTMP and their interconnection are illustrated in Figure 1-1

There are no facilities on the FTMP itself to compile or assemble programs.

Faul t
Injector

FTMP
Sys te m

The rest of this chapter mainly discusses the process of creating a program for FTMP using the cross-

It will also review some of FTMP's operating system structures and

Finally, we shall discuss the

compiler, assembler, and linker.

what these structures niean to the programmer trying to add tasks.

downloading process so the program task can be executed on FTMP.

IBM 1-1 VAX 11-750 1 4381 DpF Generator Emulation

Unibus

4

1.1. Overview

The reader is undoubt-edly familiar wit,li the coinpile/assen~lle/link process of creating a program (Fig.

In review, the programmer creates a task or modifies an existing task written in a high-level

This code is compiled to produce a

If any assembler files are crcat,ed or modified, they too must be

Finally, the new object. modules must be linked in with

1-?).

language (AED) for execution on the target computer (FThIP).

relocatable object code module,

assembled down to relocatable object code.

existing object modules to produce a load niodulc for downloading.

P r og r om
Task

CAPS-6

Assembly

I 1

Re loco tab1
Object

Modules

.

w
OS Modules

I FTMP

i 1
Figure 1-2: Compile/~senible/Link process

On FThlP, the full process of creating or modifying a program task can be quite complicat.ed. Besides

compiling an PLED program, the user has to map out where variables and code go (in local cache menlory

or shared system memory), and must, modify system tables to include the task in the syst.eni task

5

.
I -

structure. After this, the user must re-assemble operating system tables and link everything together.

We will be referring to Figure 1-2 throughout the manual to remind the reader of the steps to preparing a

program.

1.2. Accessing the IBM

The previous edition of the manual explained the process of editing, compiling and linking files on the

IBM 4381 shown in Figure 1-1. FTMF' users were required to learn this system in addition to the VAX

and FTMP. Much of that process has now been automated so the user no longer needs to log onto the

IBM. Through VAX command files, FTMP
programs are uploaded to the IBM, processed (compiled, assembled or linked) and the results are

downloaded back to the VAX. The next two sections discuss the file structure of the FTMP software and

the commands for compiling, assembling and linking FTMP files.

Instead, the FTMP software now resides on the 'VAX.

1.2.1. File Structure

The FTMP software now resides in a VAX-11/750 in several VMS directories on the DISK$MO cluster

disk in AIRLAB. The directories are organized similar to the way they where on the IBM system. There

are three main directories: FTMP, CMU, and MUA. Each directory has the following subdirectories:

1) ASM.DIR
2) AED.DIR
3) LINKLIST. DIR
4) LOAD.DIR
5) LINK.DIR
6) LIST.DIR

The subdirectories contain the source code, both CAPS assembly (ASM.DIR) and AED (AED.DIR), the

F T h P linker command files (LINI<.DIR), the load modules (LOAD.DIR), the linker listings

(LINI<LIST.DIR) and the compiler and assembler-generated listings (LIST.DIR). IBM Job Control

Language (JCL) files are stored in a different directory and users are not allowed access to it. The

directory contains the JCL files sent by the VAX system to the IBM to execute according to commands

issued by the users on the VAX.

All files are standard VMS files. The type of a file reflects its content: AED source files are named

fdename.AED;xxx (xxx = three digit version number), CAPS assembly files are named

fifetznme.ASM;xxx, link command files are filename.LIN;xxx, and load modules are filename.LOA;xxx.

Access to the FTMF', CMU, and MUA directories is limited to users with the 175 group UIC. The files

can be edited with any VMS editor and sent to the IBM for processing. Access to the FTMP directory is

limited to read only. If you need a file from this directory you should copy it, to the corresponding CMU

8

or MUA directory and edit it there.

1.3. VAX Commands to Compile, Assemble, and Link

Several commands have been implemented on the VAX-11/750 system 10 in AIRLAB to support the

processing of the FTMP software. Once you have edited a file and i t is ready to be compiled, you need

only type one command and the file name. The system will perform all the file handling and

communications with the II3M for the user. The commands are:

a) t o compile filename.AED f i l e :
1) CMUAED filename (to access CMU directory)
2) MUAAED filename (t o access MUA directory)

b) t o assemble filename.ASM f i l e :
1) CMUASM filename (t o access CMU directory)
2) MUAASM fileitanze (t o access MUA directory)

c) t o link us ing filename.LIN linker command f i l e
1) CMULINK filename (same as above)
2) MUALINK filename (same as above).

By issuing these commands, you tell the system to access the source directory, read the specified file (the

file name should be of the proper type, i.e. AED, ASM, LIN and/or LOA), and send that file with the

proper JCL file t o the IBM for execution. You do not need to edit JCL files, the system takes care of

this. Note that the object files produced from a compilation or assembly are stored in the IBM system;

therefore i t is not necessary to send them every time a link is performed. The listing generated by the

compiler and/or assembler is sent back to the VAX and is stored in either [CMU.LIST] or [MUA.LIST]

directory. The load modules produced from a link are sent back to the VAX and are stored in either

(CMU.LOAD] or [MUA.LOAD].

When issuing a command, if the source file is not the highest version, you have to specify the complete

file specification except for the directory (i.e. fileiza77ze.type;version). The system looks for the specified

file in the default directory (e.g. [CLlU.AED] or [hlUA..kED]), and if the file is not there or if the

filename is not of the proper type an error message will be displayed on the terminal.

After the command had been issued the user does not need to wait for the compilation, assembly or link

to finish. A mail message will be sent to that user notifying him that the processing on the IBM had been

completed successfully. A fatal error message in the mail means that an error occurred in the

comniunications with the IBM. In this case you should notify AIRLAB personnel before trying again.

The communication system used to send jobs to the IBM can handle only one job at a time so several

users should not try to compile/assemble or link simultaneously.

.

7

1.4. AED
I

The purpose of this manual is not to teach AED; the FTMP user familiar with other block structured

languages like PASCAL or ALGOL, can pick up AED quickly by reading the AED manual [13] and

looking at AED code. There are, however, a few things to remember about using AED for creating tasks

on FTMP.

1. End each task with a HALT statement (or RESUME if you have SYNONYMS
HALT=RESUME at the beginning of the program). If you forget this statement your task
will run once and never return control to the task scheduler, thus stalling the FTMP
computer.

2. In the FTMP AED compiler, parameters are either pass by reference or pass by value
(differing from standard AED compilers in which all parameters are passed by reference).
Recall that with pass by reference the address of the variable is passed as a procedure
argument rather than its value, as happens with pass by value parameters. In CAPS
software, pass by value arguments are more efficient than reference arguments. Much of the
AED documentation is a little sketchy about how to define parameters for your procedures,
and how to declare external procedures and the type of parameters they use (Le. pass by
reference or by value). The following summary should clarify things.

0 When defining procedure parameters, prefix the variable type statement with "INPUT."
to make i t pass by value; otherwise it is pass by reference.

0 You must state in the declaration of an external procedure the type of parameters i t
takes. These parameters are declared just like when defining a procedure. If you do not
state the parameter types for an external procedure, parameters are assumed to be pass
by reference of ANY data type.

You can also abbreviate parameter declarations (Le. A instead of ANY). Appendix I1 contains
a list of parameter declaration argument types and their abbreviations. The following
program segment illustrates the above points:

EXTERNAL OTHER; . . . Defined in another module
INTEGER OTHER; . . . but used in this module.

PROCEDURE HREAD; . . . External procedures
PROCEDURE RD(A.A.11);

DEFINE PROCEDURE EXAMPLE (FIRST, SECOND, THIRD, FLAG)
WHERE INTEGER FIRST; . . . Reference

1NPUT.INTEGER SECOND, THIRD; . . . Value
BOOLEAN FLAG TOBE . . _ Reference

BEGIN
OWN INTEGER I; . . . Stored on stack (dynamic)

INTEGER J; . . . Static local Variable
EXTERNAL R4.CACHE; . . . Task Data Block
INTEGER ARRAY R4.CACHE;

EXTERNAL MINE; . . . Defined and allocated
VOLATILE.INTEGER MINE; . . . in this module but
PRESET MINE=O; . . . available externally.

//
//

/ /

//
//
//

//
//
//

//
//
//

8

In this example, HREAD and RD are external procedures. Procedure HREAD has reference
parameters (default since no parameter declaration), and RD has two ANY reference
parameters and one integer value parameter. Note that for HREAD we don’t have to state
the number of parameters i t uses if we choose not to. Procedure EXAMPLE is defined to take
four arguments; the first one is an integer reference, the next two are value parameters, and
FLAG is a boolean reference parameter.

3. Declaring Variables. Variables are stored differently depending on how they are declared.
The following is a summary of variable storage allocation:

0 Dynamic Local Variables. Local OWN variables are declared inside a procedure
body. Room for such variables is dynamically allocated on the stack when the procedure
is called and subsequently deallocated when the procedure is exited. The value of a local
OWN variable is undefined with each call of the procedure. In the above example, I is
such a variable. Stack variables are the most efficient in terms of access time since
CAPS-6 is a stack machine.

0 Static Local Variables. Any variable declare within a procedure body, not declared
OWN or EXTERNAL will be constructed as a static local. These variables can only be
used by the declaring procedure and nested subprocedures and are allocated in cache.
Actual location of these variables depends on the linker, although presently linker
commands put them at the bottom of the rate group’s stack page. Although these
variables are undefined when you first enter the task or procedure, recursive calls will
retain these variables’ values since they a,re statically allocated in cache (unlike OWN
variables where each recursive call allocates a new set of dynamic local variables). In the
above example, J is a static local variable.

0 There is a type of local variable that retains its value between task iterations called a
task data block variable. Data block variables are loaded into cache from system
memory by the dispatcher before the task starts, and moved back to system memory
when the task finishes. By this scheme, task data block variables retain their value no
matter which processor a task is run on. The data block variables are stored in an array
called Rx.CACHE, where x is the task rate group (1,3,4). This array is located a t the
bottom of this rate’s stack page (the stack grows froni the top of the page down), and
must be declared EXTERNAL to access. The size of this array depends on how you set
your stack liniit in the linker command file and on the Data Control Block for this task
in the system tables (see section 1.5.3). Pages 7G-78 of FTMP manual, volume I1 [ll],
describe the task data block.

When using data block variables and static local variables together, the user should
make sure that cache storage for these two do not overlap since both are usually at the
bottom of the a.ppropriate rate group’s stack page. Also, be sure to adjust the stack
limit as you add more storage for either of these variable types. All of these
adjustments are controlled by linker commands and modification of task tables (see
section 1.5.1, Linking Things Together).

0 Volatile Variables. VOLATILE variables are much like static local since they are
defined and statically allocated with their declaring module. The major differences are
that a Volatile variable must be PRESET and can be declared EXTERNAL if the user
wishes to make it available to other procedures.

0 External Variables. With an EXTERNAL statement, the module can declare for use

9

a variable which is statically allocated in another module, or can make a VOLATILE
variable available to other procedures. EXTERNAL variables are essentially system
global and available to all procedures. THERE IS NO WAY T O TELL FROM ITS
DECLARATION IF AN EXTERNAL VARLABLE IS IN LOCAL (CACHE) MEMORY
OR IN SYSTEM MEMORY. This constraint depends on how you set up your linker
commands and how you access the variable (i.e. with system bus service routines or
regular assignment). As a rule, all system memory variables are defined in the tables file
([ASM]TABLE.ASM) -- all others like VOLATILE should be defined in cache. Finally,
only a process running in PRMLEGED can use the bus service routines to access system
variables.

0 Constants. Any variable that is PRESET and not declared VOLATILE will be
constructed as a constant.

As noted above, all system memory variables are defined in the tables file (see section 1.5.3),
which is a CAPS assembly file. Therefore, a brief explanation of assembly level declarations is
warranted. Fortunately, defining variables at the CAPS assembler level is a little easier than
in AED. There are two basic rules for declaring variables:

a. If the user wants to make a local variable available to other modules, he simply puts the
statement

ENTRY variable
at the top of the file.
CAPS file.

Of course, variuble must be used as a label somewhere in the

b. The statement
EXTERNAL variable

declares that uariabk is defined in another file but is used in this file.

ENTRY and EXTERNAL variables will be in the link map (LFMTN.CMU.LINIU1ST). Any
variable in a CAPS assembly file not declared with an ENTRY or EXTERNAL statement are
local and undefined outside their CAPS file.

1.5. Linking Things Together

Once your AED program task compiles correctly i t must be incorporated into FTMF”s task structure

and linked with existing relocatable object modules to produce an absolute load module.

explains such a process.

This section

1.5.1. Link Files

Linker command files are located in the subdirectory LINILDIR. Through linker commands the user

specifies where, and i n which of FTMP’s memories (1oca.l cache or system) to put object code, where

variables reside! and where to put the runtime stacks and Operating System structures. Any time the

user creates or modifies a program task, that task must be linked in with all of the Operating System

modules. The next few paragraphs outline the

linker commands.

The link file also specifies Operating System modules.

10

- SEG: A link file can put code in either local PROM or Global memory with the following statements:
SEG PROM
SEG Mxxx

Relocatable object modules following the first statement are directed into the FTMF' PROM memory.

PROM code records are prefaced with the letter P in the absolute load module. The PROM address

space is 0 to 1FFF. and contains frequently used routines like dispatchers and the O.S. kernel. If you do

change PROM, all LRU's (Line Replaceable Units) you are going to use must be reprogrammed. We do

not recommend changing PROM unless you are sure that's what you want.

, The second statement
SEG Mxxx

puts the code for object modules following i t into FTMP system memory offset by location xxx (usually

xxx=OOOO). These

records are prefaced with the letter S in the load module.

Code in main memory is automatically paged into local cache memory as needed.

Finally, if you want to replace the PROM board in a LRU with a RAM board, you can either use the

statement
SEG RAM

in the link file or can change all of the P's prefixing PROM code in the load file to R's.

ORG: The "ORG" linker command specifies where read/write data and stacks, code, and read only

data go. The format of the ORG command is
ORG " xxxx 'I, < y >

where xxxx is the hex offset and < y > is defined as follows:

0 Data and stacks
1 Code
2 Read only d a t a

Thus the statement
ORG "2800",1 ;

starts putting code of relocatable modules following this statinent into memory location hex(2800) of the

absolute load module.

- IN: The IN command tells the linker to include the given relocatable object module in the link. Thus,
IN LIB(SCC)

will link in the object module that contains the system configuration control (SCC) routines.

need a.n IN statement to include the module that has your program task.

YOU will

EQU: The EQU command binds a previously undefined variable to the value or variable name

following the EQU. Thus the statement

11

Rl.TASIC1 EQU SCC ;

sets Rl.TASIC1 to be procedure SCC.

meaning and format to the l inker EQU command.

There is an assembler pseudo-op EQU which is equivalent in

Generally, you should not have to change or add SEG or ORG commands when building a link file --
the explanation of these commands is only included so that the user understands the linklist output

produced by the linker.

For those of you thoroughly confused by the above discussion, an example is in order.
SEG

ORG
ORG
ORG

IN
IN

SEG

ORG
ORG
IN
IN

PROM

'80000", 2
"2000" ,o
"0100" , 1

LIB (REGS)
LIB (KERNEL)

MOO0

"2800", 1
"2500" ,O

LIB (SELFTEST)
LIB (SCC)

. . .

TASK.Rl1 EQU SCC

R11.STKLM EQU *+6,0

ORG "2700", 0
IN LIB (EXAMPLE)

TASK.R41 EQU TEST
R41.STKLM EQU *+6,0

. . .
ORG 0 , O

END
IN LIB(TABLES)

,

,

I

I

,

,

,

,

,

,

Read only data area
Read/write data area (2000 to 24FF)
Code area -- loc hex(l00) on

Register definitions
O.S. Kernel

Code area in Main memory -- hex(2800) on
PSD's and STACKS (2500 to 27FF)
System configuration control
Master Self test

"TASK.Rll", declared EXTERNAL in another
is now defined to be the procedure "SCC" .
Stack limit is "2500"+6
Top Of Stack is "25FF" (defined in TABLES)
(TOS and STKLM are the cache locations)

Put R4 task variables at location "2700"

R41 stack limit is "2700"+6

SYSTEM MEMORY IMAGE
"TABLES" CONTAINS VARIABLE DEFINITIONS ONLY

The AED linker creates an output file which lists link errors (undefined symbols, multiply defined

symbols, etc.) plus contains a load modu le memory map and a cross reference list ing. The list file

is in the subdirectory LIMUIST.DIR.

12

For those requiring further reference, the linker is discussed briefly in the FTMP Software Manual 1111,

section 6.3, and discussed more extensively in the CAPS Link Editor User's Guide [7].

1.5.2. Prototype Link File

Understanding the meaning of linker commands is fine, but simple instructions on how to modify an

existing link file t o create an absolute load module with your task in i t would be even better.

Fortunately, there is a prototype link file named EXEC.LIN that can be used with few modifications.

Make a copy of this file for modification. There are four major things to check and modify if necessary:

1. Decide which System Configuration Control task to use -- SCC or FSCC. SCC is the normal
The "IN one and FSCC is a special task used when doing fault injection experiments.

LIB(SCC)" statement is at about line 4G of the EXEC link file.

2. Assign your program task a rate group and task number. Look for a statement
TASILRxy EQU <procedure name>

where z is the rate group (1,3 or 4) and y is the task number. Change <procedure name> to
the n ime of your program task. Usually, your program task will be TASKR41, .R42, or
.R43. If there is not a label for the rate group and task number that you want, you will have
to create a task control block, a dummy PSD Block, and (optionally) a data control block for
your task (see section 1.5.3).

3. Include your program module using an "IN LIB(<module name>)" statement. A good place
for this statement is immediately before the statement defining your program's rate group and
task number.

4. Check that you include the correct "tables" file that has your system variables and set up
task tables. The statement for including the tables is the second to the last statement in the
link file.

Also, if you are using a lot of local and a data block variables, adjust the stack limit appropriately in the

link file. Local and data block variables are at the bottom of the stack page while the stack grows from

the top of the stack page down.

Once you have created a link file for your task you should never have to modify the link file again, even

if you recompile you task, unless you add more tasks.

1.5.3. Setting up Task Tables

Through linker commands you specify task names plus the location of code and variables. However,

Also, if the user through the task tables you actually link tasks into the Operating System structure.

creates any global variables they must be defined in the system tables.

The file TAl3LES.ASM defines the system niemory image. Every system variable that the user or

operating system uses must be defined in this file since this file essentially maps where everything is

13

TOP PNTR

NMT PNTR

TRUID TRACICER

FRAME COUNT

SLIP

(I W D R i T R I

I -

I I BIT NO

R4 control block.

ODD SYS ADR I&]
I - - I
I - I -
I I

(a) Task control block (b) D a t a control block

Figure 1-3: Operahg Syst,em Ta.4 Structures

E l -PSD PNTR-

(C) PSD

14

located in memory. There are two reasons that the user would be interested in the TABLES file:

1. The user's tasks use global variables in system memory (i.e. variables read in with alRDo').
TABLES is the system memory image. In this case the user will define his variables at the
end of one of the pages, or (more likely) somewhere on pages (hex) F through 28 -- the free
system memory pages. Such variables must be declared with an ENTRY statement (usually
at the top of the file), and its actual location is marked by the symbol name starting in the
first column, followed by a RES or VAL,uE statement. The link map, located in the
subdirectory LINIUIST.DIR, will give the location of the variables.

2. The user has added a task and needs to create a Task Control Block, dummy PSD, and Data
control block for the task. In addition, pointers need to be set t o link these new task
structures in with the other Operating System structures. Figure 1-3 are the operating system
task structures. These structures are explained in the FTMP Software manual [Ill, pages
74-79. It is strongly recommended that the user read these pages of the Software manual
before proceeding. Following is a review of the structures. We will particularly elaborate on
fields whose implementation differs from the FTMP software manual's explanation.

R4 Control B1ock:Implementation is as explained in the FTMP software manual. Field one of
the R1 control block, "TOP PNTR", may be changed by the dispatcher
while FTMP is running because of task re-ordering due to constraint bits
(see explanation of constraint field in task control block below). The names
of the blocks in TABLES are R4, R3, and R1.CONTROL.

Task Control Block:
Every task on FTMP has a Task Control Block assigned to i t . Actual
implementation of this block differs significantly from what is described in
the FTMP software manual.

FWD PNTR -- Pointer to next Task Control Block in the task list
or NULL if end of list. For R1 tasks, this pointer may be changed by
the R1 dispatcher when it reorders the tasks. Also, you can use CTA
to change this field while FTMP is running to link new tasks in
dynamically (very useful while experimenting and debugging).

BWD PNTR -- Unused. There is no backward pointer.

MAX TIME -- Max time, in clock ticks, that the task is allowed to
run before i t is aborted. One clock tick is 0.25 milli-seconds.

0 FRAME -- Same as in the FTMP Software manual.

DATA PNTR -- Pointer to this task's Data Control Block, or " L L if
no such block.

PSD PNTR -- Pointer to this task's PSD block.

CONSTRAINTS -- The description in the FTMP software manual
has nothing to do with actual implementation. For R4 and R3 tasks,
this constraint field is unused. For R1 tasks, this field is 0 or
processor triad id number (1, 2, or 3) and specifies the processor triad
that the R1 dispatcher should try to run this task on. A zero field (0)
indicates no processor triad constraint. If the processor triad is not

15

up, then the task can run on any processor. The dispatcher does not
guarantee running a task on its requested processor triad if other R1
tasks request the same triad. Also, the dispatcher will reorder tasks in
system tables if a constrained task has to wait for a processor t o
become available (the constrained task is slipped down the list if its
requested processor is unavailable). Presently, the only task that uses
the constraint field is 14SCCB1 (or "FSCC" if using fault injection
configuration). 08SCC" systematically changes the constraint field so
it can run a full round of self-tests on each processor.

0 BIT NO. -- Has no meaning since constraint bits are not implemented
as specified in the manual.

Data Control Block:
Actual implementation is as described in the FTMF' software manual,
except that NEXT PNTR is unused. The meaning of the fields are:

TYPE: O--RD/WRT, 1--RD, 2--WRT.
LENGTH: Length in bytes.
EVEN/ODD ADR: As described in the FThP Software manual.
CACHE ADR: Rx.CACHE where x is 1, 3, or 4. This is the buffer that you

reference in your task program to use task data block variables. It
is usually at the bottom of the task's stack page. So as you
increase the size of the Data block remember to modify the stack
limit in the PSD.

NEXT PNTR: unused.

None of the present tasks on FTMP use the Data Control Block. Instead,
all tasks run in PRIVILEGED mode and get data to/from system memory
directly with WRT and RD commands (USER tasks are not allowed to
access system memory with RD/WRT routines which is the reason for Data
Blocks).

PSD block: Implementation is pretty much as described in the FTMP Software manual.
However, the PMR field warrants further discussion.
PMR -- Privileged/non-privileged status. Zero for non-privileged, non-zero
for privileged. There is a significant difference between these two modes.
In Privileged mode:

0 You can use the bus service routines (RD, WRT, etc.) and thus can
access system memory any time.

0 All interrupts, except for timer, IPC and page faults are ignored.
Thus you could overflow stacks or write to protected memory without
interrupt. Of course, most interrupt handlers are not written so it
r ea11 y doesn't matter .

By contrast, in non-privileged or USER mode:

You cannot use the bus service routine and thus have no direct access
to system memory. Instead you must rely on Data Blocks to store
things in system memory. If you try to use RD or WRT in USER
mode, YOU WILL STALL THE SYSTEM (requiring system reboot)
since you wouid invoice the unimpiemented write protect vioiation

16

interrupt.

0 Interrupts are not automatically masked in USER mode. In fact,
many of the exceptions will crash the system since many of the
interrupt handlers are unimplemented. Considering this risk, most
users will inevitably run everything in privileged mode

Each time you add a task, one of each of the above blocks (Data Block excluded) must be created in

TABLES.

A few final notes: Remember to re-assemble the TABLES file if you change i t . Also, some of the fields

can be changed dynamically using CTA. In particular, you could set the forward pointer in the Task

Control Block to link in a new task dynamically. The Synthetic Workload program developed by CMU

reconfigures the system this way. Every so often doing this might stall the system if you happen to set a

pointer as the dispatcher is modifying i t (this is especially true with R1 tasks). With respect t o TABLES

and the link file, system memory is divided into data and code. Code is generally being paged into local

memory as processors need it while data is accessed with RD or WRT statements. Data can only be in

pages 0-27 of system memory while pages 28-3F are code only. The boundaries are hard set in PROM in

the page fault handling routine (PFAULT).

And last but not least: think carefully and keep straight when addresses are local cache RAM addresses

and when they are main nteniory addresses. As a rule, and don't break this rule, main memory variables

are defined in TABLES. So on the cross reference listing, any variable that is DEFINED IN tables is in

main memory and must be referenced with RD/WRT. Otherwise i t is a cache local.

1.5.4. Linking

Linker errors do not appear at the end of the job listing as they do for compiles and assembles. To see

errors like undefined labels and such, go to the linklist file in the subdirectory LINI<LIST.DIR. Load the

linklist file into the editor and search for all occurrences of "ERROR". This linklist file also contains

such valuable information as a memory map and a cross reference listing.

The link may be aborted if there is something like a syntax error in the link command file. In such a

case, no linklist file will be produced. Instead, the word "ABEND", for "abnormal end", will appear in

the first page of the job listing. An error code, which must be looked up in an appropriate manual [7],

will be on the third or fourth page of the listing. Some of the most common reasons for a linker abort

are:

1. one of the lines in the linker file doesn't end with a semicolon (;), and

2. there is a blank line (!!) in the link file (related to the first problem).

17

If the link is successful there will be a absolute load module in the load -..ectory called filename.LOA.

1.6. Downloading

Now that you have compiled and linked a program task you want t o run i t on the FTMP. But before

you can run the task on FTMP you have t o get i t there (i.e. move the absolute load module from the

VAX to the FTMP). There are two steps to loading FTMP with your program. First, you must prepare

the load module (fifename.LOA) by stripping the PROM code and terminating blanks. There is a

program developed by Ed Czeck the does this. To run i t type RUN [EWC.BIN]FXLD.EXE. The "fixed"

load module produced by this program is now ready to be loaded. The FTMP can be loaded by executing

one of the following DCL command files (the [LALA.CAPS] directory is located on DISI<$DEVPACI<):

[LALA. CAPS] GO. COM Loads FTMP with its normal operating system
(SCC) and applications under a three
processor triad configuration.

[LALA. CAPS] FGO . COM Loads FTMP with a fault injection version of
the operating system (FSCC) and a three
processor triad configuration.

[LALA.CAPS]2TRIADS.COM Loads FTMP with its normal operating system
and two processor triads.

[LALA.CAPS]lTRIAD.COM Loads FTMP with its normal operating system
and a s i n g l e processor triad.

If you want t o load FTMP with your own memory image (load file) simply copy one of the above

command files into your directory and change the line that loads the executive memory image to load

your file instead (this statement is around line 90-100; use the EDT command FIND 'LOAD' to help find

the line). Start the downloading process by giving the command @<command file> to the VMS prompt.

For example, to load FTMP with a two processor triad configuration the command is
$ @2triads

Loading FTMP takes about 10 minutes.

The easiest way to tell if you loaded FTMP correctly is to see if the display terminal starts up. You

can also use CTA to check main memory locations 6 00 (TIME-NOW) and 3 18 (TIME LO -- next R4

start time). If these do not change between checks the FTMP system is not running.

1.7. Debugging FTMP

Debugging a program running on FTMP is actually very difficult. The only way to check if your

program is running is t o have i t write to select main memory locations and use CTA to check these

locations. Also, FTMP is a real-time computer, so a (R4) program task will run 25 times a second.

18

However, when debugging, you will undoubtly want to run the task only once and check results.

Therefore, provide another main memory variable that when set, runs the task once and resets the

variable. Figure 1-4 is an example of a typical program in the debugging stage.
,

MODULE BEGIN
<declarations. . . >

EXTERNAL MM . START, MM . CHKPT ; . . .
INTEGER MM.START, MM.CHKPT;

< . . .>
DEFINE TASK TOBE
BEGIN

INTEGER START;

Main Memory Variables. //

RD(MM.START.START.1); . . . START <-- MM.START //
IF (START EQL 1) THEN . . . Execute the following code //

BEGIN . . . when START set to I. //
<code. . .>
WRT(MM.CHKPT.10.1); . . . Mark that we got to this point. //
<code. . .>
WRT(MM.CHKPT.11.1); . . . Second mark. //
<etc. . . >
START = 0;
WRT(MM.START.START.1); . . . Only execute test code once. //

END ;
RESUME(0) ;

END ;
END FINI;

Figure 1-4: Program in Debugging Stage

I
There is actually a way to step through and breakpoint a program using the CAPS Test Adaptor.

However, neither of the authors have used i t for debugging. We refer the reader to the document CAPS

Test Adaptor User's Guide [9] for information on breakpointing a program with the test adaptor.

1.8. Collecting Data

Once you have a working program task you will want to collect data from it. Typically this data will

be in the form of timer values, although other forms like sensor values are feasible. In addition, as an

experimenter you will want this data recorded in a file for later analysis. All of this is done with CTA

and VAX command files. Data collection also involves tailoring your programs so that they dump an

array of values into memory upon command (i.e. setting a memory value with CTA).

I

I

Figure 1-5 is an example of a typical command file for data collection. To run a command file type the

following to the VAX prompt:
$ @<command- f i l e name >

If you want the output saved in a file, use the /OUTPUT parameter on the command line. An good

example of a more extensive data collection command file is the one to run the workload generator for

FTMP implemented by CMU. This file is in [EFC.WORI<LD]WRI(LD.COM.

Data collection dumps are not very pleasant to look a.t (Figure 1-6), so the experimenter will probably

19

$! Comment l i n e
$! T h i s f i l e c o l l e c t s 26 d a t a s e t s . Fo r t h i s p a r t i c u l a r
$! program t a s k , FTMP dumps d a t a i n t o l o c a t i o n F 00 upon
$! command (s e t t i n g 6 D8 t o -1).
$ COUNT = 0
$ LOOP:
$! S e t FTMP memory location 6 D8 t o -1 t o s t a r t d a t a c o l l e c t i o n .
$ MCR CTA

MS 5 D8 = FFFF
EXIT

$! Pause 2 seconds t o l e t FTMP w r i t e out d a t a .
$ WAIT 0 : 0 0 : 0 2
8 ! Look a t t h e d a t a .
$ MCR CTA

HL i o 00 108
EXIT

$ COUNT = COUNT + 1
$ IF COUNT .LT. 26 THEN GOT0 LOOP

Figure 1-5: Data Collection Example

0032 34F4 0032 34F3 0032 34F2 0032 34F1 ! 0010 0000
0032 3591 0032 3591 0032 34F5 0032 34F4 ! 0010 0008
0032 3595 0032 3594 0032 3593 0032 3592 ! 0010 0010
0032 369E 0032 369D 0032 369C 0032 369C ! 0010 0018
0032 3785 0032 3784 0032 36A0 0032 369F ! 0010 0020
0032 3788 0032 3787 0032 3786 0032 3785 ! 0010 0028
0032 386B 0032 38611 0032 3869 0032 3868 ! 0010 0030
0032 3955 0032 3954 0032 386D 0032 386C ! 0010 0038
0032 3958 0032 3957 0032 3957 0032 3956 ! 0010 0040
0032 39Dl 0032 39D0 0032 39CF 0032 39CE ! 0010 0048
0032 3A6E 0032 3A6D 0032 39D3 0032 39D2 ! 0010 0050
0032 3A71 0032 3A70 0032 3A70 0032 3A6F ! 0010 0058
0032 3B28 0032 3B27 0032 3B26 0032 3B25 ! 0010 0060

0032 3B29 0032 3B29 ! 0010 0068

Figure 1-6: Sample Data Collection Dump

want t o write a program to decipher and analyze these dumps.

analyzing timer value dumps is i n [EFC . W ORI(LD] \I’RI<LD. C .
An example of a ’C’ program for

1.9. Summary

Confused by all of the steps to preparing a program? The following flowchart of programming steps

should help.

Create a
Program
Task

20

1 t

Debug <--------- Load FTMP
- - - - - - - - -

Compile Using CMUAED or I t
MUAAED VAX Commands I I

I I
I I I
I I I
1

.......................

I (Edit PROM code
O u t of Load F i l e)

Yes I

< Errors? > -----------
t

I I

1
I No Link Using VAX Command

CMULINK or MUALINK
...................... / New O S \

/ St ruc tu res \ Yes Modify t
< or New User >--------- > Tables I

I
\ / I I

------ \ Variables? /

I I Link F i l e Modifications:
I 1
I
I No Using VAX Command

CMUASM or MUAASM t
I

I
I
I I I
I I I
I 1 I

Add Module Name
Assemble Tables Provide program name

........................

.......................

____________________----------------------------

21

2. FTMP Operation From the VAX
There are various support hardware and software for FTMP installed on AIRLAB VAX system 10.

This chapter outlines the support environment and operations for installing and using the support

software and hardware. Specific questions on hardware should be addressed to the current hardware

maintainer of FTMF' at AIRLAB. Questions on the support software should be addressed to the current

software maintainer .

2.1. FTMP Overview

2.1.1. FTMP Hardware Overview

The FTMP is mounted in a rack and composed of 10 identical boxes, each a Line Replaceable Unit

(LRU), which are connected through a system bus. Each LRU has 19 printed circuit boards that make up

its processor with cache memory, system memory, MIL-STD-1553A 1/0 port, and bus interface. The

transfer bus of each processor, which connects the processor with its cache memory, is accessible through

the bottom connector in the front of the LRU.

The FTMP support equipment is mounted in a rack beside the FTMF' and is composed of the Collins

Test Adapter (CTA), seven 1553 communication boards, the fault injector, and the PROM programmer.

They are all connected to the VAX's UNIBUS.

The CTA can load programs into the FTMP and display 4 locations in the processor's cache memory.

The CTA is connected to the tra.nsfer bus through the bottom connector in the front of the LRU that is

initially acting as master, which is usually LRU A. The top connector controls access of the LRU to the

system bus during loading. There is a shorted plug that when plugged in, the LRU is enabled to all the

busses. LRU A has a computer controlled version of this shorted plug which is used by DCL command

files that load FTMP (i.e. SHORTED and OPENED command).

The 1553 communication boards provide the FThP a status display on a RS232-Terminal and

communication with programs in the VAX. These boards have a microcomputer that allows them to be

microprogrammed to do 1553-RS232 or 1553-UNIBUS communication. Each board has a separate

UNIBUS base address. The last two numbers of the UNIBUS address are used as a tag for each board.

They have the following tag numbers: 00, 08, 10, 18, 20, 28, a.nd 30. Only two of the boards are used at

any one time, and they are connected to two 1/0 ports each.

The fault injector is used to inject hardware faults into the FTMP for experimentation. It is connected

between the subject Integrated Circuit (IC) and its board.

22

The PROM programmer loads the PROM board of the FTMP processor after i t has been erased with

W light. Consult the FTMP hardware report (lo] for further information on the PROM programmer.

2.1.2. FTMP Software Overview

The programs to use the FTMP's support equipment are written in the assembly language for the PDP

11/60 and run in compatibility mode in the VAX. Their names are CTA for the test adapter, M15 for

the communication boards, and FIS for the fault injector. They can be invoked with the DCL command

MCR <Program-Name> . Their command languages are described in the facilities software section of

the FTMP software report [111.

Each of these programs has an interface program that allows them to access the UNIBUS. The names

of their interface programs are CTINTG, INTER, and FISIN respectively. They communicate with their

interface programs using mailboxes. The interface programs are written in VAX assembly language and

FORTRAN, and are activated as detached processes when the VAX reboots. These programs and the

FTMP load files reside in the VAX disk labeled DISK$DEVPACI<.

2.2. VAX Initialization

The VAX's startup procedure should create the detached processes CTINTG, INTER, and FISIN.

There execution can be verified by the DCL command SHOW SYSTEM. The detached processes initially

created have the UIC 175,lO and can only be used by users whose UIC group number is 175 (all FTMP

users UIC's have 175 in the group field).

Two 1553 communication boards are loaded with there microcode at boot time and should be working

all the time. Which boards are being used could change at any time. Therefore if they are not working i t

is best to notify AIRLAB personnel.

2.3. Turning the FTMP On

All the power FTh4P requires is provided by turning on the switch labeled "POWER" in the top panel

of the support rack beside the FTMP. Once this is done the amber light to the right of the switch should

be on. FTMP requires 28 VDC for its LRU's and 400 HZ for its fans. The green and red lights on the

left of the switch indicate whether the 400 HZ is in or out of phase respectively. For safety reasons, the

28 VDC will not be applied if the 400 HZ is not on and in phase.

23

2.4. Loading the FTMP

The FTMP load files are in the LOAD.DIR subdirectories and their file type is LOA. The major three

load files are:

0 EXEX -- The normal operating system and application tasks.

0 FEXEC -- A version of EXEC with the FSCC system task for automatic fault injection.

0 LRUDIAG -- A standalone diagnostic program for one LRU (described in section 3.4).

As covered in section 1.6, the FTMP can be loaded by executing a DCL command procedure. The

command procedure DISK$DEVPACK:[LALA.CAPS]GO.COM will load the FTMP with its normal

operating system and applications (E)CEC.LOA). The command procedure

DISI<$DEVF'ACK:[LALA.CAPS]FGO.COM will load the FTMP with the fault injection version of the

operating system and applications.

2.5. FTMP Status Display Operation

2.5.1. Turning the Display Station On

The display station is an Kp terminal and i t can be turned on by a switch on the left back corner. It

The must be set to 4800 baud, full duplex, no parity, and the REMOTE switch must be depressed.

switch box the terminal is connected to must be set t o the position labeled FTMF'.

2.5.2. Loading the 1553-RS232 Communication Board

The 1553-RS232 communication board that interfaces the FTMP with the display station is loaded with

its program every time the VAX reboots. This board can be reloaded by executing the DCL command

procedure DISK$DEVF'ACK:(LALA.CAF'S]DISPLAYxx.COM (xx = tag number on the board). Which

procedure you run depends on the current interface board. Look for a tag on the board to get the board

number.

2.6. FTMP Fault Injector Operation

2.6.1. Loading the 1553-UNIBUS Communication Board

The 1553-UXTIBUS communication board that interfaces the FTM?? with the VAX UNIBUS to do Direct

Memory Access (DMA) is loaded with its program every time the VAX reboots. This board can be

reloaded by executing the DCL command procedure DISI<$DEVF'ACK: [LALA.CAPS]FISxx.COM (xx =

tag number on the board). Which procedure you run depends on the current interface board. Look for a

24

tag on the board to get the board number. Before reloading this communication board the FISIN process

(section 2.2) must be executing or have been executing at least once since the VAX rebooted, because the

first time i t executes i t allocates the VAX memory page used for DMA.
I

2.8.2. Connecting the Fault Injector

The fault injector can be connected to one or more boards of LRU 3. During the connection of the fault

injector to a board, the board must be disconnected from the LRU. Boards can be connected and

disconnected from a LRU with the FTMF’ power on, except for the RAM and BGU boards which have

CMOS IC’s. These boards must have sockets and are extended using one or more extender cards. The

IC’s to be connected to the fault injector must be taken out of the board and replaced by FET extenders.

The pins of each FET extender must be connected to the pins in the socket that they are going to be

mapped to in the FIS command procedure. The IC’s must be placed on top of the FET extenders so the

IC pins are connected to the corresponding IC socket holes.

I 2.6.3. Injecting Faults

Both power supplies in the fault injector hardware must be turned on to inject faults. All units in LRU

3 should be placed in an active triad. Use the status display to verify that they work properly with the

fault injector connected. The FIS program must be activated using the DCL command MCR FIS. After

the prompt FIS> appears commands can be given interactively but usually a FIS command procedure for

the types of IC’s to be tested is executed. The default file type of FIS command procedures is CMD. For

additional information in how to use the fault injector consult the FTMP test and evaluation report [12].

25

3. Helpful Hints
By the time you get to this chapter you should have a pretty good idea how to work with FTMP and

how its real-time environment works. Hopefully, you have also written and run a simple program like the

one described in Appendix 111. If so, you undoubtedly have encountered problems and even extreme

frustration over the turnaround time when you first write an AED program task to actually running i t on

FTMP. This chapter will hopefully explain how to shortcut the downloading process and explain what to

do when problems are encountered with any of the various systems. You will undoubtly come to this

chapter more than any other chapter in the manual. Hopefully, you can find answers to your questions

here.

3.1. Dial U p Lines

For programmers that are working remotely, there is a dial up line to system 10 and to AIRLAB's

bridge system.

VAX system 10: ,

Must be s e t to 1200 baud, F u l l Duplex .
865-4407

AIRLAB's Bridge System:
865-4406
1200 baud, F u l l Duplex
Works b e s t w i t h a DEC-compatible t ermina l

3.2. When FTMP doesn't work

3.2.1. FTMP Will not Load

Sometimes you will execute a command file to boot FTMP and that file will not load. There are

variety of reasons for this, all of which should be checked.

1. If you are loading FTh4P and get a message

this means CTA cannot find the absolute load module (.CAPS file) for downloading. If this
happens, first check that the CAPS file does exist. Then make sure the CAPS file you are
loading has a variable length record format (do a "DIR /FULL" of the file). If i t has a some
other record format, CTA does not know it exists. The easiest way to correct the format is to
load the LOA file into the editor and save the file -- EDIT gives files variable length record
format when i t saves.

CT&A0302W FILE NOT FOUND - RESPECIFY

2. If the load stalls, check that RUNCTINTG is loaded (look for i t in the process list with a
"SHOW SYSTEM" command). If RUNCTINTG is not loaded, give the command
@[LALA.CAPS]RUNCTINTG to start this process (see section 3.2.3) and try loading again.

26

3. Check that the cable from the test adaptor to LRU A is secure and the shorted switch is
computer controlled.

4. If nothing else works, cycle the power to FTMP and try loading again.

3.2.2. HP2648 display terminal

Occasionally you'll boot FTMP and the display terminal will not s tar t up. If the terminal doesn't boot,

Another reason for the display

T o do this, run the command file

Which one you run depends on the

first make sure the HP is a t 4800 baud and set to monitor FTMP.

terminal not working is the interface board needs to be booted.

[LALA.CAPS]DISPLAYxx.COM (xx = tag number on the board).

current interface board.

number. Thus, t o boot the xx928 interface board do the following:

I

I
I The last two digits on a tag on the board corresponds to the command file

$ 63 [LALA. CAF'S]DISPLAY28

If the terminal still doesn't boot, check that FTMF' is running by using CTA to look at one of FTMP's

clocks at location 6 00 or location 3 18. If the value in either of these locations does not change between

checks, FTMP is not running.
~

3.2.3. VAX/FTMP interface and Collins Test Adaptor

Communication and downloading to FTMP is via a test adaptor connected to a Line Replaceable Unit

(LRU A). A program on the VAX, called CTA, communicates with the test adaptor so the FTMP user

can examine/change memory and download core images. The background process CTINTG needs to be

present for CTA to work. Start up this process with the

following command:

Use SHOW SYSTEM to see if i t is present.

$ @[LALA.CAF'S]RUNCTINTG

If CTA stalls while using i t , it's probably because CTINTG crashed (the DECWriter paper terminal will

spew out a message). In this case you also need to start up CTINTG with the above command file. If

CTA keeps crashing, check that the test adaptor/LRU connection is secure. If CTA still will not start up,

you probably need to cycle power and reboot FTMP.

Finally, if the test adaptor was used to program PROMS or there was a power cycle, you may need to

set the addresses that the Collin's test adaptor monitors. The addresses are 2001, 2002, 2003, and 2004.

Set these using the "Set Addr" key on the test adaptor [SI.

3.3. Failing and Repairing Processors

The easiest way to repair or fail a processor while FTMP is running is to give appropriate commands on

the HF' display terminal (pages 191-201, FTMP Software manual [I l l) . However, at times the user may

want to reconfigure the system from the VAX (remote access) or from within a task program. In such

27

cases, i t is still easiest t o use display routines. Specifically, use the display input buffers so that FTMP

thinks it's getting HI' terminal input. The input buffer is LINE.BUFF (located at page 6 offset 4B) and

expects a one word character count followed by ascii input characters. P u t HI' terminal commands in

this buffer to fail or repair a LRU. Remember that on FTMP, bytes are ordered right to left, so the

Least Significant Byte of a word is the first byte. Set LINE.READY (location 6 15) to 1 when you want

the DISPLAY routine to read the input line. The memory array TRIAD.ID.TABLE (location 0 50)

contains the state of all LRU's on the system so you can see the present configuration (page 49 of FTMP

software manual [Ill).

As an example, suppose we wanted to fail processor 6 using CTA. We would have to give the following

commands:

CTA> MS 6 4B = 3 3 input characters
CTA> MS 6 4C = 5046
CTA> MS 6 4D = 36 asci; "6'
CTA> MS 6 15 = 1 Transmit the line

ascii 'FP' for fail processor

For this procedure to work, R 1 task number 1 and 2, "DISPLAY" and 08SCC", must be linked in to the

task structure. Most users build command files to fail or repair specific processors (i.e. the command

@FAIL3 will fail processor 3) so they don't have to type the above commands every time they want to

reconfigure the FTMP from the VAX.

3.4. LRU Diagnostic Program

LRUDIAG is a standalone diagnostic program for testing one LRU. If you suspect flaky performance in

a unit i t might be helpful t o run this program on the LRU in question. The following procedure is used

for running this diagnostic program.

Before every new test run, cycle the power on FTMP. Then set the test adaptor display to locations

20A0, 20A1, 20A5 and 20A4. Now plug the extender cable (normally plugged into LRU A) into the

bottom plug of the LRU you want to test, and put the special shorted plug adaptor into the top plug.

Next go into CTA and give the command BLRUDIAG. The diagnostic program will print several

messages and ask you two questions -- just follow instructions. Pull the shorted plug before continuing

after the second time the diagnostic program halts. See chapter 5 of FTMP software manual [ll] for

future discussion of LRUDIAG.

28

3.5. More on CTA

There are a few CTA commands not listed on pages 173-175 of the FTMP Software Manual [I l l . Some

of these commands are:

LIST address num: This command lists to the terminal 'num' words of cache memory starting at the

given address. This only lists contents of cache for the LRU that the test adaptor is connected to.

- SET address num = data: This is used to set cache memory on the LRU that the test adaptor is

attached to. 'num' is the number of words to set to 'data' starting at the given address.

RESET, ---- EXIT, HALT, RUN: Commands mainly used in command files for loading FTMP. The user

will probably never need these commands so I will forgo discussion of them.

Also, the MSET command has additional fields not mentioned in the manual. Following is the new

definition of MSET:

MSET page offset num = (datal,data2,..datanUm): This is used to set 'num' system memory locations

to 'datal' through 'datanum' starting at the address defined by 'page' and 'offset'. 'Num' defaults to 1.

The parenthesis are not required if you are setting all memory locations to the same value. (i.e. MSET 0

0 256 = 0, zeros the first memory page).

E: Show the value of the Real Time Clock.

29

Appendix I
System Bus Service Routines -- Additions

Pages 158-162 of FTMP Software Manual [ll] describes the bus service routines available to the FTMP

user. However, this document fails to describe how you should declare these routines if you wish to use

them, especially the parameter types each routine uses. Also, some of the routines do not exist under the

name given in the manual. Following is a list of the bus service routines and how each routine should be

declared (As a reminder: A stands for ANY type of reference parameter, and 11 means INTEGER value

parameter). See FTMP Software Manual [11] for a description of routines and arguments.

WRT(A,A,II); instead of WRITE.
RD(A,A,II); instead of READ.
HWRITE(A,A,I);
HREAD(A,A,A);

NREAD(A,A,A);
NWRITE(A,A,I);
SREAD(A,A,I,II);
S WRITE(A,A,A);
SLREAD(A,A,A,II)
S NREAD (A,A,I,II)
READL(A,A,A);
WRITEL(A,A,A);
HOG.BUS();
RELEASE.BUS();

I will remind the FTMP user that these routines can only be called by a task executing in privileged

mode.

If used to read RT.CLOCI<, the first two
arguments are longwords

ABBREVIATION
B
I
L
P
R
IT3
I1
IL
IP
IR
P R

BPR
IPR
LPR
P P R
RPR
LB
S
A

BC
IC
LC
P C
RC

BRCPR
IRCPR
LRCPR
PRCPR
RRCPR
RCPR

30

Appendix I1
Parameter Declarations

ARGUMENT TYPES

SPELLING
BOOLEAN
INTEGER
LONG
POINTER
REAL
1NPUT.BOOLEAN
1NPUT.INTEGER
1NPUT.LONG
INPUT .POINTER
INPUT .REAL
PROCEDURE
BOOLEAN PROCEDURE
INTEGER PROCEDURE
LONG PROCEDURE
POINTER PROCEDURE
REAL PROCEDURE
LABEL
SWITCH
ANY
BOOLEAN COMPONENT
INTEGER COMPONENT
LONG COMPONENT
POINTER COMPONENT
REAL COMPONENT
BOOLEAN RECURSIVE PROCEDURE
INTEGER RECURSIVE PROCEDURE
LONG RECURSNE PROCEDURE
POINTER RECURSIVE PROCEDURE
REAL RECURSIVE PROCEDURE
RECURSNE PROCEDURE

MEANING
Reference
Reference
Reference
Reference
Reference
Value
Value
Value
Value
Value
Reference
Reference
Reference
Reference
Reference
Reference
Reference
Reference
Reference
Reference
Reference
Reference
Reference
Reference
Reference
Reference
Reference
Reference
Reference
Reference

. .

i -.\

ln
W
0)
1 a

31

Appendix 111
Program Example

Following is an example of how to create a program task on FTMP starting with compiling an AED
program, to downloading and running the absolute object module on FTMP. For this example, the files

are in the C W directory and the file names will be EXAMPLE. Also, throughout this example, user

response is underlined while italicized phrases are guiding comments.

Look at an AED program created earlier

$ TYPE [CMU . AED] EXAMPLE. AED
EXAMPLE BEGIN
SYNONYMS HALT=RESUME;

PROCEDURE RD(A,A,II), WRT(A,A,II);

. . . Main Memory Variables. //
EXTERNAL EXAMP.EXEC1, EXAMP.EXEC2;
INTEGER EXAMP.EXEC1, EXAMP.EXEC2;

DEFINE PROCEDURE HELLO.WORLD TOBE
. . . WRITES EXEC1 + 1 INTO EXEC2 //
BEGIN
OWN INTEGER TMP; . . . STACK LOCAL //

INTEGER I; . . . NON-STACK LOCAL //

. . . TMP <-- EXAMP.EXEC2 //
RD(EXAMP.EXEC1, TMP, 1);
I = 1;
TMP = TMP + I;

WRT(EXAMP.EXEC2, TMP, 1);
. . . EXAMP.EXEC2 <-- TMP //

RESUME (0) ;
END; . . . PROCEDURE HELLO.WORLD //

END FINI;

Submit the above program for compile

$ CMUAED [CMU . AED] EXAMPLE

You will be sent mail when the compile finishes

Check i f link file exists ...

$ DIR [CMU.LINK]
FRANK25 FRANK3 INTDIAG IOLOOP LRUDIAG LUTEST MEMQUES NIOECHO
OPCODE PFTEST PLLTEST READLOOP RMUXTEST RVOTER SCOOP SEND
SSAC STAT SYNC SYNCPROM SYNCS SYNC1 TAPESYS TASKRl
TESTHOG TESTLOOP TESTPCL TESTPF TESTV TESTW TEST1553 TIMERTST
lMKlC31 I ~ l A U l 1KIAU;L ininua 1 3 1 LlYh 1 1 1

.l.,.,.-%nr. .mT IwunIXuJL X X i i ...-.....e m-7 . _ O ...-.l.. ."r m-r -.------ --.L-.-.

32

WRTTES XFEXEC

It doesn't -- Create link file from prototype link file (EXEC)

$ EDIT [CMU.LINK]EXEC.LIN
SEG PROM ,

*TYPE 'SCC'
00004600 IN LIB(SCC)
--
*TYPE 'TASK.R41'
00007900 TASK.R41 EQU AUT.O.LAND ; TASK R41 IS "AUTO.LAND"
*TYPE 'TASK.R43'

TASK.R43 EQU DUMMY ; PROCEDURE NAME

-
-

Set to our procedure name (HELL0.WORLD)

*SUB/DUMMY/HELLO.WORLD/
TASK.R43 EQU HELLO.WORLD ; PROCEDURE NAME

1 substitutions
*TYPE -1
00008900
--
*TYPE -1
00008800 IN LIB(TASKR43) ; TASK R43 IS DUMMY TASK

Have Linker include our Relocatable Module

*SUB/TASKR43/EXAMPLE/
00008800 IN LIB (EXAMPLE) ; TASK R43 IS DUMMY TASK
1 substitutions
*TYPE +3
00009000 R43.STKLM EQU *+6 ,0
-
*TYPE -3:+1 --
00008800 IN LIB (EXAMPLE) ; TASK R43 IS DUMMY TASK
00008900

00009000 R43.STKLM EQU *+6,0
00009100
*TYPE END-3
00010400 IN LIB (TABLES) ; SYSTEM MEMORY TABLES

TASK.R43 EQU HELLO.WORLD ; PROCEDURE NAME

--

Save in New file

*EXIT [CMU.LINK]EXAMPLE.LIN
[CMU . LINK] EXAMPLE. LIN
-

Modify OS tables and add user variables to Main Memory
by editing TXBLES"

FULLY UPDATED

$ - EDIT [CMU . ASM] TABLES. ASM
00000100
*TYPE END-7:END
00133800
00133900
00134000

-
; PDPllsO.FTMP.ASM(TABLES) 9 JAN 82

VALUE "E210" ; PROM, TRIAD 3 ,IEOO
VALUE 'I 0522 I' ; T , TRIAD I ,HIGH ORDER
VALUE "0532" ; T , TRIAD 2 ,HIGH ORDER

33

I -

00 134 100
00134200
00134300
00134400

Add New variables to the end (page F)

* INSERT

*TYPE END-9:END
00134100
-
00134200
00134300

VALUE 'I 0502 'I ; T , TRIAD 3 ,HIGH ORDER
VALUE "0602" ; C , ANY TRIAD, 2ND HIGH
VALUE "0613" ; C , ANY TRIAD, HIGH ORDER
FINI ,

EJECT

RES "FO0"-END . OF. PAGEF ;
END.OF.PAGEF EQU *
EXAMPL.EXEC1 VALUE 0 ; VARIABLES ON PAGE F
EXAMPL.EXEC2 VALUE 0 ;

VALUE "0502" ; T , TRIAD 3 ,HIGH ORDER
VALUE "0602" ; C , ANY TRIAD, 2ND HIGH
VALUE I' 06 1 3 Io ; C , ANY TRIAD, HIGH ORDER

EJECT

RES "FOO "-END. OF. PAGEF ;
END.OF.PAGEF EQU *
EXAMP.EXEC1 VALUE 0 ; VARIABLES ON PAGE F
EXAMPL.EXEC2 VALUE 0 ;

00134400 FINI
*TYPE 1. -
00000100 ; PDPll6O.FTMP.ASM(TABLES) 9 JAN 82

Create ENTRY statements at the top o f the file to
make the new variables available externally.

*INSERT
ENTRY EXAMPL . EXEC2
ENTRY EXAMPL . EXEC 1

Find OS task tables and check that TASK.RI3 i s linked i n
and the PSD f o r the new task i s set up correctly.

*TYPE 'R4.LIST'
00063300
*TYPE 'R4. LIST '
00070900 R4.LIST
*TYPE -2:+30
00070700
0 0 0 7 0 8 0 0
00070900 R4.LIST
00071000 R4.TASKl
00071100
00071200
00071300
00071400
00071500
0007 1600
uuu717uu

-
-
--

VALUE

EQU

RES

EQU
EQU
VALUE
VALUE
VALUE
VALUE
VALUE
VALUEY.
VALUE

R4. LIST ;

*
104

*
*
R4. TASK2 ;
0
24
0
R41. DATA ;
R41. PSD ;
0

TOP POINTER

SPACE FOR MORE TASKS

TASK1 CONTROL BLOCK "AUTOLAND"
FORWARD POINTER
NOT USED
TIME LIMIT (6 MSEC)
FRAME COUNT
NULL POINTER
PSD POINTER
~ n ~ l C . l ' D A T IWC bum 0 I I. u

34

00071800
00071 900
00072000 R4.TASK2
00072100
00072200
00072300
00072400
00072500
00072600
00072700
0 0 0 7 2 8 0 0
00072900
00073000 R4.TASK3
00073100
00073200
00073300
00073400
00073500
00073600
00073700
00073800
00073900
*TYPE 'R43. PSD '
00073600
*TYPE 'R43. PSD '
00083800 R43.PSD

-

*TYPE -1:+10
00083700
--

VALUE 1 ; BIT NO

EQU * ; TASK2 CONTROL BLOCK "CWSH
VALUE R4.TASK3 ; FORWARD POINTER ok
VALUE 0 ; NOT USED
VALUE 80 ; TIME LIMIT (20 MSEC)
VALUE 0 ; FRAME COUNT
VALUE R42.DATA ; DATA POINTER
VALUE R42.PSD ; PSD POINTER
VALUE 0 ; CONSTRAINTS
VALUE 2 ; BIT NO

EQU
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
RES

*
0
0
24
0
R43 .DATA
R43. PSD
0
3
104

; TASK3 CONTROL BLOCK "DUMMY"
; FORWARD POINTER
; (NOT IN TASK CHAIN)
; TIME LIMIT (6 MSEC)
; FRAME COUNT
; DATA POINTER
; PSD POINTER
; CONSTRAINTS
; BIT NO
; SPACE FOR MORE TASKS

VALUE R43.PSD ; PSD POINTER

EQU *

00083800 R43.PSD
00083900
0 0 0 8 4 0 0 0
00084100
00084200
11 184310
00084400
00084500
00084600
00084700
00084800
*EXIT
[CMU . ASM] TABLES. ASM
-

EQU *
VALUE R4.STACK
VALUE R43.STKLM
VALUE TASK.RQ3,B
VALUE 0
VALUE 1
VALUE 1
VALUE 'I F800 I'
VALUE 0

EJECT

NOW assemble TABLES

$ CMUASM [CMU . ASM] TABLES

Wait for compile and assem- le to finis

Submit a link

$ CMULINK [CMU .LINK] EXAMPLE

Check for " B E N D " in the results

1

; TASK PSD TABLES

; TOS
; SKLM
; SPCR
; LENV
; PMR (ON) PRIV mode - ok
; MAPPER (ON)

; ALL RUPTS (EXCEPT OVERFLOW) ENABLED
; PSD POINTER

35

c

1 J E S 2 J O B L O G -- S Y S T E M 0 4 8 2 -- N
16.19.04 JOB 410 IEF677.I WARNING MESSAGE(S) FOR JOB CMULINK ISSUED
16.19.04 JOB 410 $HASP373 CMULINK STARTED - INIT I2 - CLASS C - SYS 0482
16.19.04 JOB 410 IEF4031 CMULINK - STARTED - TIME=l6.19.04
16.20.26 JOB 410 CCIOOlC LINK /00010.55/00136/00256/002037/0/4/0000/FM11P99
16.20.26 JOB 410 IEC1301 PARM DD STATEMENT MISSING
16.20.26 JOB 410 IEC1301 MESSAGE DD STATEMENT MISSING
16.20.30 JOB 410 CCIOOlC ~0P~ATA/00000.34/00044/00256/000773/0/2/0000/FM11P99
16.20.39 JOB 410 CCIOOlC PRINTALL/00000.38/00008/00256/000504/0/1/0000/FM11P99
16.23.20 JOB 410 CCIOOlC ZILJAD /00055.56/00060/00256/000273/0/3/0000/FM11P99
16.23.20 JOB 410 IEF4041 CMULINK - ENDED - TIME=16.23.20
16.23.20 JOB 410 $HASP395 CMULINK ENDED

O------ JES2 JOB STATISTICS ------
- 17 OCT 84 JOB EXECUTION DATE
- 46 CARDS READ
- 1,281 SYSOUT PRINT RECORDS
- 0 SYSOUT PUNCH RECORDS
- 4.27 MINUTES EXECUTION TIME
UQSOOO9 - END OF DATA SET.

1 //CMULINK JOB (FMll,P996).’M. REILLY’,CLASS=C,REGION=256K,
JOB 410

// TIME=0010
***UQ ACCOUNT FMll
***OUTPUT OUTPUT WILL BE HELD - DO NOT RELEASE
//XLINK PROC MEMB=
//LINK EXEC PGM=LINK,PARM=’XREF ’
//STEPLIB DD DSN=PDP116O.AEDCAPX.LOAD.DISP=SHR,UNIT=335O,VOL=SER=335018

// DCB=(RECFM=FBA,LRECL=l33,BLKSIZE=l33)
//SOURCE DD DSN=LFMTN . CMU . LINK(&MEMB) , DISP=SHR ,UNIT=3350,
// VOL=SER=335018
//LIB DD DSN=LFMTN.CMU.COBJ,DISP=SHR,UNIT=3350,
// VOL=SER=335018
//IM$FILE DD UNIT=SYSDA,SPACE=(CYL,(2,2)),

//SYSPRINT DD DSN=&~TMPLIST,DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(~,~)),

Link didn’t abort -- Now check for linker
errors i n LINKLIST file.

$ EDIT - [CMU . LINKLIST] EXAMPLE. LIS
*TYPE ALL ’ERROR’
1 J E S 2 J O B L O G -- S Y S T E M 0 4 8 2 -- N
--

19* IN LIB(CLRALLEL) ; CLEAR ALL ERROR LATCHES
** ERROR DETECTED IN LINE NO. 106 . SYMBOL EXAMP.EXEC2 IS UNDEFINED
** ERROR DETECTED IN LINE NO. 106 . SYMBOL EXAMP.EXEC1 IS UNDEFINED
NUMBER OF ERRORS DETECTED : 2

FAIL.ERROR DISPLAY 046FE 0 *NOT REFERENCED*

Two undefined symbols!!

*TYPE 107 --
104* ORG 0.0

*TYPE -2:+4 --
102* R33.STKLM EQU *+6,0
in.?*

36

104* ORG 0,O ,
105* IN LIB (TABLES) ; SYSTEM MEMORY TABLES FULLY UPDATED
106* END

** ERROR DETECTED IN LINE NO. 106 . SYMBOL EXAMP.EXEC2 IS UNDEFINED
** ERROR DETECTED IN LINE NO. 106 . SYMBOL EXAMP.EXEC1 IS UNDEFINED

*QUIT -
$ TYPE [CMU . AED] EXAMPLE. AED
EXAMPLE BEGIN
SYNONYMS HALT=RESUME;

. . . Main Memory Variables. //
EXTERNAL EXAMP.EXEC1, EXAMP.EXEC2;
INTEGER EXAMP.EXEC1, EXAMP.EXEC2;

DEFINE PROCEDURE HELLO.WORLD TOBE
. . . WRITES EXEC1 + 1 INTO EXEC2 //
BEGIN
OWN INTEGER TMP; . . . STACK LOCAL //

INTEGER I ; . . . NON-STACK LOCAL //

. . . TMP <-- EXAMP.EXEC2 //
RD(EXAMP.EXEC1, TMP, 1);
I = 1;
TMP = TMP + I;

WRT(EXAMP.EXEC2, TMP, 1);
. . . EXAMP.EXEC2 <-- TMP //

RESUME(O);
END; . . . PROCEDURE HELLO.WORLD //

END FINI;

Reason for error: Main memory variables called
EXAMP.EXEC* in A E D program,
but called EXAMPL.EXEC* in
TABLES -- change A E D code.

$ EDIT
EXAMPLE BEGIN

[CMU . AED] EXAMPLE. AED

*TYPE 'EXAMP' -
EXTERNAL EXAMP.EXEC1, EXAMP.EXEC2;

*SUB/AMP/AMPL/

2 substitutions
*TYPE +1

*SUB/AMP/AMPL/

2 substitutions
*TYPE 'EXAMP. '

EXTERNAL EXAMPL.EXEC1, EXAMPL.EXEC2;

-
INTEGER EXAMP.EXEC1, EXAMP.EXEC2;

INTEGER EXAMPL.EXEC1, EXAMPL.EXEC2;

-
. . . TMP <-- EXAMP.EXEC2 //

*SUB/AMP/AMPL/

37

. . . TMP <-- EXAMPL.EXEC2 //
1 substitutions
*TYPE 'EXAMP.'

*SUB/AMP/AMPL/

1 substitutions
*TYPE 'EXAMP. '

*SUB/AMP/AMPL/

1 substitutions
*TYPE 'EXAMP.'

-
RD (EXAMP. EXEC1, TMP, 1) ;

RD (EXAMPL . EXEC1 , TMP, 1) ;

-
. . . EXAMP.EXEC2 <-- TMP //

. . . EXAMPL.EXEC2 <-- TUP //

-
WRT(EXAMP.EXEC2, TMP, 1);

WRT(EXAMPL.EXEC2, TMP, 1) ;
*SUB/AMP/AMPL/

1 substitutions
*TYPE 'EXAMP.'
String was not found
-

-

WRT(EXAMPL.EXEC2, TMP, 1);
*EXIT
[CMU . AED] EXAMPLE. AED
-

Recompile

$ CMUAED [CMU . AED] EXAMPLE

Wait for compile to finish

Relink

$ CMULINK [CMU. LINK] EXAMPLE

Modify DCL command file to load FTMP
with EXAMPLE memory image.

$ EDIT 2TRIADS.COM
WRITE . THIS PROGRAM STARTS UP 2 PROCESSOR AND MEMORY TRIADS.
*99 -

99 LOAD EXEC.CAP

99 LOAD EXAMPLE.CAP
*SUB - /EXEC.CAP/EXAMPLE.CAP/
1 substitutions
*EXIT
SYS$DEVICE:[EFC.MANUALI2TRIADS.COM
-

1
-

Wait for link to finish (you will get a mail message)

Check for " M E N D " i n the results

J E S 2 J O B L O G -- S Y S T E M 0 4 8 2 -- N

16.27.43 JOB 425 IEF6771 WARNING MESSAGE(S) FOR JOB CMULINK ISSUED
16.2?.43 JC!E 425 $HASP373 CMULINK STARTED - INIT I2 - CLASS C - SYS 0482

38

16.27.43 JOB 425 IEF4031 CMULINK - STARTED - TIME~16.27.43
16. 16.29.13 JOB 425 CCIOOlC LINK /00010.89/00136/00256/002030/0/4/FM11P996
16.29.13 JOB 425 IEC13OI PARM DD STATEMENT MISSING
16.29.13 JOB 425 IEC1301 MESSAGE DD STATEMENT MISSING
16.29.18 JOB 425 CCIOOlC C0Pn>ATA/00000.36/00044/00256/000773/0/2/0000/FM11P99
16.29.25 JOB 425 CCIOOlC PR1NTALL/00000.37/00008/00256/000504/0/1/0000/FM11P99
16.32.26 JOB 425 CCIOOlC ZLOAD /00055.58/00060/00256/000276/0/3/0000/FM11P99
16.32.26 JOB 425 IEF4041 CMULINK - ENDED - TIME~16.32.26
16.32.26 JOB 425 $HASP395 CMULINK ENDED

O------ JES2 JOB STATISTICS ------
- 17 OCT 84 JOB EXECUTION DATE
- 46 CARDS READ
- 1,281 SYSOUT PRINT RECORDS
- 0 SYSOUT PUNCH RECORDS
- 4.72 MINUTES EXECUTION TIME
UQSOOOQ - END OF DATA SET.

1 //CMULINK JOB (FMll,P996),’M. REILLY’,CLASS=C,REGION=256K,
JOB 425

// TIME=0010
* * *UQ ACCOUNT FMll
***OUTPUT OUTPUT WILL BE HELD - DO NOT RELEASE
//XLINK PROC MEMB=
//LINK EXEC PGM=LINK,PARM=’XREF ’
//STEPLIB DD DSN=PDPI16O.AEDCAPX.LOAD,DISP=S~,UNIT=335O,VOL=SER=335018
//SYSPRINT DD

//SOURCE DD

//LIB DD

//IM$FILE DD

//

//

//

Linked ok

I Loud FTMP

$ @2TRIADS
Bit set

THIS PROGRAM

DSN=&&TMPLIST , DISP=(, PASS) , UNITSYSDA, SPACE= (CYL, (1,l)) ,
DCB=(RECFM=FBA,LRECL=l33,BLKSIZE=l33)
DSN=LFMTN.CMU.LINK(&MEMB),DISP=SHR,UNIT=3350,
VOL=SER=335018
DSN=LFMTN.CMU.COBJ,DISP=SHR,UNIT=3350,
VOL=SER=335018
UNIT=SYSDA,SPACE=(CYL,(~,~)),

STARTS UP 2 PROCESSOR AND MEMORY TRIADS.

MEMBERS OF TRIAD1 ARE LRU’S 0, 1 AND 2.

MEMBERS OF TRIAD2 ARE LRU’S 3, 4 AND 5.

THE MASTER IS LRU “A”.

COOP.CAP LOADED IN MASTER

MASTER ISSUING BUS ENABLE/SELECT COMMANDS.

. CLEARING SYSTEM MEMORY TO 0

BEGINNING LOAD OF EXEC MEMORY IMAGE

39

SYSTEM MEMORY LOAD COMPLETE

LRU’S 6,7,8,9,A,B ARE MARKED FAILED.

TRIAD.ID.TABLE, MRR.TABLE SHOULD BE ALTERED TO CHANGE
THIS CONFIGURATION.

SLOP IS SET TO 40 PER CENT OF R4 PERIOD.

STARTING 2 TRIADS

MASTER MAKING FINAL BUS ASSIGNMENTS

SYSTEM STARTED IN MULTIPROCESSOR MODE.

. CONFIGURATION TABLES ARE LOCATED AS FOLLOWS:

TABLE LOCATION LENGTH

. BUS INMUX SELECT CODE 0 20 12

. C BUS ASSIGNMENTS 0 20 12

. P, R AND T BUS ASSGN 0 38 12

. MEMORY STATUS 0 44 12

. PROCESSOR STATUS 0 50 12

ERROR LATCHES 1 00 48

. INITIATING TRANSFER OF CLOCK FROM MASTER

Bit is reset
DISCONNECTED FROM C BUS 1
DISCONNECTED FROM C BUS 2
DISCONNECTED FROM C BUS 3
DISCONNECTED FROM C BUS 4
DISCONNECTED FROM C BUS 5

$ MCR CTA
CT&A> 6 00 2 check that FTMP i s running

CT&A> & 5 00 2

CT&A> & F 00 2

0000 0172 I 0006 0000

0000 0176 I 0006 0000

0001 0000 1 OOOF 0000

0003 0002 I OOOF 0000
It runs!

40

References

All references are available from AIRLAB personnel, NASA Langley Research Center.

W E D Manual
IBM, 1969.

AED Programmer ’s Guide
Softech, 1973.

AED User’s Guide
Softech, 1973.

AED-CAPS Programmer Reference IBM 560/370 Version
Rockwell Collins, 1979.

AEDCAPS Cross Compiler User’s Guide
Rockwell Collins, 1974.

CAPS Instruction Set Description
Rockwell Collins, 1979.

CAPS Link Editor User’s Guide
Rockwell Collins, 1979.

CAPS Relocatable Cross Assembler User’s Guide
Rockwell Collins, 1976.

CAPS Test Adaptor User’s Guide
Rockwell Collins, 1979.

Development and Evaluation of a Fault-Tolerant Multiprocessor (FTMP) Computer, Vol I , FTMP
Rinciples of Operations
Charles Stark Draper Laboratory, 1983.
Contract Report (CR) 166071.

Development and Evaluation of a FTMP Computer, Vol II , FTMP Software
Charles Stark Draper Laboratory, 1983.
CR166072.

Development and Evbluation of a FTMP Computer, Vol III, FTMP Test and Evaluation
Charles Stark Draper Laboratory, 1983.
CR166073.

Introduction to AED Programming
fourth edition, Softech, 1973.

User Utilities
IBM, 19G9.
Pages 63-119.

\

1. kea No.
NASA TM-89015

7. k r t ~ = l ~ J Frank E . Fea ther
Car los A . Liceaga
Peter A . P a d i l l a

e. h f a r m t q Orgmizrtlfm k m a and L W r r

NASA Langley Research Center
Hampton, V i r g i n i a 23665-5225

1. carrnmrn . N o .

12. bocbaing k m a r6 Address

h a t i o n a l Aeronaut ics a n d Space A d n i n i a t r a t i o n
K a h i n g t o n , D C 20546-00G1

,
11. Contract 01 Giant Fco.

5. R ~ p o r r 0.0
September 1956

6. P o d a r n t c r Ormmznaon
505-66-21-02

IO. h i t y orif. (of this- 20. S a v i t ~ C l a d . lof thir WJ

Un c l ass i i i ea unc i ass i f i ed

10. Wark Urur No.

21. No. of ?- 22. *-
1. 9 A n ? - L t J

13. TVP of R m n 6 Rid Comd

Technical Memorandun
14 *'vq r g w c v co6

15. S u p a r r m r r y NotU

Frank E. Feather is an employee of Carnegie-Mellon University.

16. Ahtract

The F a u l t T o l e r a n t Mul t iprocessor (FTMP) computer systm w a s cons t ruc t ed us ing
the RockwelUColl ins CAPS-6 processor . I t i s i n s t a l l e d i n t h e Avionics
I n t e g r a t i o n Research Laboratory (A I R L A B) of N A S A Langley Research Center . I t
is hos ted by AIRLAB'S System 1 0 , a VAX 111750, f o r t h e load ing of programs and
exper imenta t ion .
high level language cal led Automated Engineering Design (A E D) Sys tem, an
assembler f o r t h e CAPS-6 p rocesso r assembly language, and a l i n k e r .
t h i s suppor t so f tware is through an automated remote access f a c i l i t y o n t h e V A X
which saves t h e use r of t h e burden of l ea rn ing how t o use t h e I B M 4381.

The FTMP suppor t software inc ludes a c r o s s compiler fo r a

Access t o

T h i s manual is a compi la t ion of information about the FTMP suppor t environment.
I t exp la ins t h e FTMP software and suppor t envirorment a long many of t h e f i n e r
po in t s of running programs on FTMP. T h i s w i l l be h e l p f u l t o t h e r e s e a r c h e r
t r y i n g t o run an experiment on FTYP and even t o t h e person probing FTMP wi th
f a u l t i n j e c t i o n s . Much of t h e informat ion i n t h i s manual can be found i n other
sources ; we are only a t t empt ing t o b r ing toge the r t h e basic p o i n t s in a s i n g l e
source. If t h e reader need any p o i n t s c l a r i f i e d , there is a list of suppor t
documentation i n t h e b a c k of t h i s manual.

17. U y W a d , Ifuclplfd br AuthdrJJ

F a u l t -Tolerance
Mul t ip rocess s r s
A E D Programming
F a u l t I n j e c t i o n
Data C o l l e c t i o n

Unclass i f ied--Unl i m i t e d

Sub jec t Category 6 2

t

c

